Math 275D Lecture 22 Notes

Daniel Raban

November 22, 2019

1 Local Martingales for Stochastic Integrals

1.1 Stochastic integrals as local martingales

Example 1.1. Let $X_t = B_{t \wedge \tau}$, where $\tau = \inf\{t : B_t \leq -1\}$. Then define

$$Y_t = \begin{cases} X_{\frac{t}{1-t}} & t \le 1\\ -1 & t \ge 1 \end{cases}$$

Then Y_t is a local martingale with

$$\tau_n = \begin{cases} \inf\{t : Y_t \ge n\} & \text{ if } \inf < \infty \\ n & \text{ otherwise.} \end{cases}$$

We need to check that $Y_t^{(n)} := Y_{t \wedge \tau_n}$ is a martingale. First, $Y_t^{(n)} \in \mathbb{R}$, for each t, so this is well-defined. Then $Y_t^{(n)} = B_{\tilde{t} \wedge \tilde{\tau}_n} = B_{\frac{t}{1-t} \wedge \tilde{\tau}_n}$, where $\tilde{\tau}_n = \frac{\tau_n}{1-\tau_n}$ and $\tilde{\tau}_n = \inf\{\tilde{t}: B_{\tilde{t}} = n \text{ or } -1\}$.

If $f \in L^2_{\text{loc}}([0,T])$, why is $\int_0^t f \, dB_s$ a local martingale? We know that $\int_0^T f^2 \, dt < \infty$ a.s., and $F_t = F_T$ if t > T. Let

$$\tau_n = \begin{cases} \inf\{t : \int_0^t f^2 \ge n\} & \text{if inf} < \infty\\ nT & \text{otherwise.} \end{cases}$$

1.2 Recovering martingales from local martingales

What properties do local martingales have?

Example 1.2. Let X_t be a local martingale with $X_0 = 0$, and let $\tau = \inf\{t : X_t = -a \text{ or } b\}$. We want to calculate $\mathbb{P}(X_\tau = a)$. When this is a martingale, we use the fact that $\mathbb{E}[X_\tau] = 0$.

Define $X_t^{(n)} := X_{t \wedge \tau_n}$, which is a martingale. Then $X_{t \wedge \tau}^{(n)}$ is a (bounded) martingale. Then $\mathbb{E}[X_{\tau}^{(n)}] = 0$. This gives us $\mathbb{E}[X_{\tau \wedge \tau_n}] = 0$. But $X_{\tau} = \lim_{n \to \infty} X_{\tau \wedge \tau_n}$ as $n \to \infty$. Since this is pointwise bounded convergence, we get L^1 convergence: $\mathbb{E}[X_{\tau \wedge \tau_n}] = \mathbb{E}[X_t]$. **Theorem 1.1.** Let X_t be a local martingale with a sequence of stopping times τ_n , and let τ be a stopping time. Then $Y_t := X_{t \wedge \tau}$ is a local martingale. Furthermore, if X_t is bounded $(\sup_{\omega,t} |X_t| \leq M)$, then X_t is a martingale.

Proof. The martingale property is $\mathbb{E}[X_t | \mathcal{F}_s] = X_s$. For local martingales, we have $\mathbb{E}[X_{t\wedge\tau_n} | \mathcal{F}_s] = X_{s\wedge\tau_n}$. Letting $n \to \infty$ so $\tau_n \to \infty$, the right hand side becomes $X_{s\wedge\tau_n}$. However, this does not necessarily mean that the left hand side goes to $\mathbb{E}[X_t | \mathcal{F}_s]$; we can have $f_n \to f$ but $\int f_n \not\to \int f$. But Fatou's lemma tells us that if $X_t \ge 0$,

$$\mathbb{E}[X_t \mid \mathcal{F}_s] \le \liminf_n \mathbb{E}[X_{t \wedge \tau} \mid \mathcal{F}_s] \le \lim_n X_{s \wedge \tau_n} \le X_s.$$

So if $X_t \ge 0$, then X_t is a supermartingale. So if $|X_t| \le M$, then X_t is a martingale. \Box

1.3 Local martingale form of Itô's formula

We have learned one form of Itô's formula:

$$f(B_t) - f(0) = \int_0^t f'(B_s) \, dB_s + \frac{1}{2} \int_0^t f''(B_s) \, ds$$

for $f \in C^2$.

People like to use the formula in another way:

$$\int_0^t f(B_s) \, dB_s = \int_0^{B_t} f(s) \, ds - \frac{1}{2} \int_0^t f'(B_s) \, ds$$

for $f \in C^1$. Here, the right hand side depends on ω , so the left hand side should, as well. So the left hand side is determined " ω by ω " or "pathwise."

Let's extend this notion to $f(t, B_t)$ for $f \in C^1 \times C^2$. We have

$$f(t, B_t) = f(0, B_0) + \int_0^t f^{(1,0)}(s, B_s) \, ds + \int_0^t f^{(0,1)}(s, B_s) \, dB_s + \frac{1}{2} \int_0^t f^{(0,2)}(s, B_s) \, dB_s$$

where the superscripts denote partial derivatives. Here, if $f^{(1,0)} = f^{(0,2)}$, then $f(t, B_t)$ equals a constant plus the 3rd term, which is a local martingale. This will give us that f is a local martingale.